Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Talanta ; 211: 120721, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32070593

RESUMO

We have earlier demonstrated sensitive detection of low the volatile nerve agents Tabun, Cyclosarin and VX by using handheld Raman instrumentation in conjunction with surface-enhanced Raman scattering (SERS) attained with gold and silver coated Si nanopillar substrates. In the present proof-of-concept study, the gold substrates chemically are functionalized to realize selectivity towards organophosphorus compounds (OPs) with high sensitivity. A potential capturer and reporter molecule, chemical nerve agent antidote, 4-pyridine amide oxime, is evaluated due to its high Raman cross section, high chemical affinity towards gold, and binding specificity to the target substances Tabun, VX and Cyclosarin via the oxime group. Upon selective and covalent binding, the SERS probe undergoes structural changes which are reflected in the spectral SERS responses, making it suitable for indirect monitoring of nerve agents in aqueous solution. With the probe attached to the hotspots of Au-coated Si nanopillars, the SERS signals distinctly discriminate between specific and non-specific analyte binding of Tabun, Cyclosarin and VX down to sub ppm levels. SERS spectrum of 4-PAO is measured after microliter drop coating of aqueous sample solution onto the functionalized substrates and subsequent water evaporation from surfaces. This binding assay is complemented by letting functionalized substrates being immersed into sample solutions 1 h before measuring. Binding specific SERS response decreases in following order: Tabun > VX > Cyclosarin. Overall, the concept looks promising, as expected the candidate probe 4-PAO introduces selectivity to the nanopillar gold substrates without loss of sensitivity.

2.
ChemistryOpen ; 6(6): 706-709, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29226058

RESUMO

Fingermarks have, for a long time, been vital in the forensic community for the identification of individuals, and a possibility to non-destructively date the fingermarks would of course be beneficial. Raman spectroscopy is, herein, evaluated for the purpose of estimating the age of fingermarks deposits. Well-resolved spectra were non-destructively acquired to reveal spectral uniqueness, resembling those of epidermis, and several molecular markers were identified that showed different decay kinetics: carotenoids > squalene > unsaturated fatty acids > proteins. The degradation rates were accelerated, less pronounced for proteins, when samples were stored under ambient light conditions, likely owing to photo-oxidation. It is hypothesized that fibrous proteins are present and that oxidation of amino acid side chains can be observed both through Raman and fluorescence spectroscopy. Clearly, Raman spectroscopy is a useful technique to non-destructively study the aging processes of fingermarks.

3.
Biophys J ; 107(2): 401-410, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25028882

RESUMO

Proteins function in cellular environments that are crowded with biomolecules, and in this reduced available space, their biophysical properties may differ from those observed in dilute solutions in vitro. Here, we investigated the effects of a synthetic macromolecular crowding agent, dextran 20, on the folded states of hyperthermophilic (S16Thermo) and mesophilic (S16Meso) homologs of the ribosomal protein S16. As expected for an excluded-volume effect, the resistance of the mesophilic protein to heat-induced unfolding increased in the presence of dextran 20, and chemical denaturation experiments at different fixed temperatures showed the macromolecular crowding effect to be temperature-independent. Förster resonance energy transfer experiments show that intramolecular distances between an intrinsic Trp residue and BODIPY-labeled S16Meso depend on the level of the crowding agent. The BODIPY group was attached at three specific positions in S16Meso, allowing measurements of three intraprotein distances. All S16Meso variants exhibited a decrease in the average Trp-BODIPY distance at up to 100 mg/mL dextran 20, whereas the changes in distance became anisotropic (one distance increased, two distances decreased) at higher dextran concentrations. In contrast, the two S16Thermo mutants did not show any changes in Trp-BODIPY distances upon increase of dextran 20 concentrations. It should be noted that the fluorescence quantum yields and lifetimes of BODIPY attached to the two S16 homologs decreased gradually in the presence of dextran 20. To investigate the origin of this decrease, we studied the BODIPY quantum yield in three protein variants in the presence of a tyrosine-labeled dextran. The experiments revealed distinct tyrosine quenching behaviors of BODIPY in the three variants, suggesting a dynamic local interaction between dextran and one particular S16 variant.


Assuntos
Agregados Proteicos , Proteínas Ribossômicas/química , Sequência de Aminoácidos , Dextranos/química , Dados de Sequência Molecular , Mutação , Desnaturação Proteica , Multimerização Proteica , Proteínas Ribossômicas/genética
4.
Biophys J ; 104(3): 694-704, 2013 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-23442920

RESUMO

Proteins fold and function in cellular environments that are crowded with other macromolecules. As a consequence of excluded volume effects, compact folded states of proteins should be indirectly stabilized due to destabilization of extended unfolded conformations. Here, we assess the role of excluded volume in terms of protein stability, structural dimensions and folding dynamics using a sugar-based crowding agent, dextran 20, and the small ribosomal protein S16 as a model system. To specifically address dimensions, we labeled the protein with BODIPY at two positions and measured Trp-BODIPY distances under different conditions. As expected, we found that dextran 20 (200 mg/ml) stabilized the variants against urea-induced unfolding. At conditions where the protein is unfolded, Förster resonance energy transfer measurements reveal that in the presence of dextran, the unfolded ensemble is more compact and there is residual structure left as probed by far-ultraviolet circular dichroism. In the presence of a crowding agent, folding rates are faster in the two-state regime, and at low denaturant concentrations, a kinetic intermediate is favored. Our study provides direct evidence for protein unfolded-state compaction in the presence of macromolecular crowding along with its energetic and kinetic consequences.


Assuntos
Proteínas de Bactérias/química , Desdobramento de Proteína , Proteínas Ribossômicas/química , Sequência de Aminoácidos , Bactérias/química , Compostos de Boro/química , Dextranos/química , Transferência Ressonante de Energia de Fluorescência , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica
5.
Phys Chem Chem Phys ; 14(6): 1917-22, 2012 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-22234292

RESUMO

Electronic energy migration within a bifluorophoric molecule has been studied by time-resolved two-photon excited (TPE) fluorescence depolarisation experiments. Data were analysed by using a recently developed quantitative approach [O. Opanasyuk and L. B.-Å. Johansson, On the Analyses of Fluorescence Depolarisation Data in the Presence of Electronic Energy Migration. Part I: Theory and General Description, Phys. Chem. Chem. Phys., submitted]. The energy migration occurs between the 9-anthrylmethyl groups of the bifluorophoric molecule, bis-(9-anthrylmethylphosphonate) bisteroid. These groups undergo local reorientations, while overall tumbling of the bisteroid is strongly hampered in the used viscous solvent, 1,2-propanediol. To solely obtain information about local reorientations of the 9-anthrylmethyl group, also the mono-(9-anthrylmethylphosphonate) bisteroid was studied, which enabled modelling of the ordering potential shape. The analysis of data is partly performed in the Fourier domain and the best-fit parameters are determined by using an approach based on a Genetic Algorithm. The energy migration process was described by an extended Förster theory (EFT). A reasonable value of the distance between the 9-anthrylmethyl groups, as well as for the mutual orientation of the ordering potentials, is found. Furthermore, values of the two-photon tensor components were obtained.


Assuntos
Algoritmos , Antracenos/química , Transferência de Energia , Polarização de Fluorescência , Fótons , Propilenoglicol/química
6.
J Fluoresc ; 21(1): 257-64, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20809135

RESUMO

Multi-photon absorption induced luminescence (MAIL) from bare gold nanoparticles, silica-coated particles, as well as silica-coated agglomerated gold nanoparticles suspended in aqueous solution was studied by using time-resolved and steady-state luminescence spectroscopy. The nanoparticles were excited by femtosecond pulses of wavelengths ranging from 630 nm to 900 nm. The luminescence from the particles exhibits a broad spectrum in the UV and VIS region. The time-resolved measurements indicate a luminescence lifetime of a few ps, limited by the response of the experimental system. The studied dependence of the MAIL efficiency on the excitation wavelength showed that the luminescence from silica-coated agglomerates was enhanced over the whole range of excitation wavelengths, when compared to the luminescence from individual gold nanoparticles. The agglomerates show an almost excitation wavelength independent efficiency of the MAIL, while for individual nanoparticles a rapid decrease of the MAIL efficiency was observed with increasing excitation wavelength. The observed enhancement of the MAIL from the agglomerated nanostructures can be attributed to the presence of localized surface plasmon resonances in the spectral region corresponding to the excitation wavelengths. The high MAIL efficiency from the agglomerated nanoparticle structures in the near-infrared could be an advantage in the expanding field of luminescence-based-imaging, as well as in biosensor technology.

7.
J Mol Biol ; 379(4): 845-58, 2008 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-18471828

RESUMO

Understanding the mechanisms that dictate protein stability is of large relevance, for instance, to enable design of temperature-tolerant enzymes with high enzymatic activity over a broad temperature interval. In an effort to identify such mechanisms, we have performed a detailed comparative study of the folding thermodynamics and kinetics of the ribosomal protein S16 isolated from a mesophilic (S16(meso)) and hyperthermophilic (S16(thermo)) bacterium by using a variety of biophysical methods. As basis for the study, the 2.0 A X-ray structure of S16(thermo) was solved using single wavelength anomalous dispersion phasing. Thermal unfolding experiments yielded midpoints of 59 and 111 degrees C with associated changes in heat capacity upon unfolding (DeltaC(p)(0)) of 6.4 and 3.3 kJ mol(-1) K(-1), respectively. A strong linear correlation between DeltaC(p)(0) and melting temperature (T(m)) was observed for the wild-type proteins and mutated variants, suggesting that these variables are intimately connected. Stopped-flow fluorescence spectroscopy shows that S16(meso) folds through an apparent two-state model, whereas S16(thermo) folds through a more complex mechanism with a marked curvature in the refolding limb indicating the presence of a folding intermediate. Time-resolved energy transfer between Trp and N-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-yl)methyl iodoacetamide of proteins mutated at selected positions shows that the denatured state ensemble of S16(thermo) is more compact relative to S16(meso). Taken together, our results suggest the presence of residual structure in the denatured state ensemble of S16(thermo) that appears to account for the large difference in quantified DeltaC(p)(0) values and, in turn, parts of the observed extreme thermal stability of S16(thermo). These observations may be of general importance in the design of robust enzymes that are highly active over a wide temperature span.


Assuntos
Proteínas de Bactérias/química , Proteínas Ribossômicas/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Compostos de Boro , Chlamydophila pneumoniae/química , Chlamydophila pneumoniae/genética , Cristalografia por Raios X , Corantes Fluorescentes , Temperatura Alta , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Conformação Proteica , Desnaturação Proteica , Dobramento de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Ribossômicas/genética , Homologia de Sequência de Aminoácidos , Espectrometria de Fluorescência , Termodinâmica , Thermus thermophilus/química , Thermus thermophilus/genética , Triptofano/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...